首页> 外文OA文献 >Distributed Constrained Optimization by Consensus-Based Primal-Dual Perturbation Method
【2h】

Distributed Constrained Optimization by Consensus-Based Primal-Dual Perturbation Method

机译:基于共识的原始 - 对偶分布式约束优化   微扰法

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Various distributed optimization methods have been developed for solvingproblems which have simple local constraint sets and whose objective functionis the sum of local cost functions of distributed agents in a network.Motivated by emerging applications in smart grid and distributed sparseregression, this paper studies distributed optimization methods for solvinggeneral problems which have a coupled global cost function and have inequalityconstraints. We consider a network scenario where each agent has no globalknowledge and can access only its local mapping and constraint functions. Tosolve this problem in a distributed manner, we propose a consensus-baseddistributed primal-dual perturbation (PDP) algorithm. In the algorithm, agentsemploy the average consensus technique to estimate the global cost andconstraint functions via exchanging messages with neighbors, and meanwhile usea local primal-dual perturbed subgradient method to approach a global optimum.The proposed PDP method not only can handle smooth inequality constraints butalso non-smooth constraints such as some sparsity promoting constraints arisingin sparse optimization. We prove that the proposed PDP algorithm converges toan optimal primal-dual solution of the original problem, under standard problemand network assumptions. Numerical results illustrating the performance of theproposed algorithm for a distributed demand response control problem in smartgrid are also presented.
机译:为了解决具有简单局部约束集且目标函数是网络中分布式代理的局部成本函数之和的问题,已开发出各种分布式优化方法。受智能电网中新兴应用和分布式稀疏性的推动,本文研究了分布式优化方法。解决具有全局成本函数和不平等约束的一般问题。我们考虑一个网络场景,其中每个代理都没有全局知识,并且只能访问其本地映射和约束功能。为了以分布式方式解决此问题,我们提出了一种基于共识的分布式原始对偶扰动(PDP)算法。在该算法中,Agent采用平均共识技术通过与邻居交换消息来估计全局代价和约束函数,同时使用局部原对偶扰动次梯度方法来逼近全局最优。所提出的PDP方法不仅可以处理光滑的不等式约束,而且还可以非平滑约束,例如稀疏优化中出现的一些稀疏性促进约束。我们证明了在标准问题和网络假设下,所提出的PDP算法收敛于原始问题的最优原始对偶解。数值结果说明了该算法在智能电网中的分布式需求响应控制问题的性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号